Microprocessor regulator APOSYS 10-1xxx

TECHNICAL DOCUMENTATION

Producer:
APCELMOS measurement \& control
A.P.O. - ELMOS v.o.s.

Pražská 90, 50901 Nová Paka Czech Republic
tel.: 493504 261, fax: 493504257
e-mail: apo@apoelmos.cz
http://www.apoelmos.cz

1 Introduction

The Controller APOSYS 10 is a universal compact controlled system for the monitoring and controlling of technology processes. For example: for the control of processes in freeze-dryers furnaces, cooling plants, smoking chambers, bakery's, farming premises, exchanger stations, or for control of air conditioning in residential and industrial spaces.

2 Description

2.1 Front panel

1 - Display

The double display represents a measuring and a demanding value of the controlled variable. The measuring value is on the upper line and the demanding value is on the bottom line. At measure and control programming the display offers tabular report.

2 - Check light ,"C"

If is by operator set the any temperature sensor (Pt 100,Ni 1000,termocouples J, K, T, E, R, S, B), is the check light „${ }^{\circ}{ }^{\circ}{ }^{\text {" }}$ lighting. For other ranges the check light do not lighting.
When the check light will be to twinkle is necessity to let the controller to calibrate by the producer.

3 - Check lights of outputs state

Check lights 1-4 indicate the state of single outputs by this way: the check light is lighting output is switch-on, the check light don't lights - output is switch-off.

4 - Check light „TUNE"

The check light „TUNE" indicate switching-on a function of automatic adaptive tuning PID constants.

5 - Check light „MODE"

The check light „MODE" indicate presence in the programming menu.

6 - Key „UP"

Is for listing in the menu and for a numbers date setting at programming. At the key keeping the listing or setting run faster. In the basic mode is possible to set a requred value SP (see description LOC_ on a page 31) directly.

7 - Key „DOWN"

Is for listing in the menu and for a numbers date setting at programming. At the key keeping the listing or setting run faster. In the basic mode is possible to set a requred value SP (see description LOC_ on a page 31) directly.

8 - Key „SET"

Is for resetting at parameters setting. For return back in parameters programming and for switchover to the manual control.

9-Key „MODE"

Is for input to programming of parameters and for confirmation of setting dates.

2.2 Input part

APOSYS 10 is one-loop PID controler. In the input part is a universal sixteen bit converter with galvanic isolation. It's allowed to connect the sensor Pt 100, sensor Ni1000/5000ppm, Ni1000/6180ppm, thermocouple (J, K, E, T, S, B), or unificate current (4$20 \mathrm{~mA}, 0-20 \mathrm{~mA}$) or voltage ($0-10 \mathrm{~V}, 0-50 \mathrm{mV}$) signal. Changing of input signal type is possible by reprogramming by keypad and by jumpers position changing (see page 8).

2.3 Output part

Output elements are four miniature relays with max. loading $250 \mathrm{VAC}, 2 \mathrm{~A}$. The relay out 1 and out 2 are united with the control. The relay out 3 and out 4 signal the alarm. Relay contacts are protected by varistors. For switching of inductive loading is recommended ,for increase of reliability and decrease of interference, to corresponding contacts to connects antijamming RC networks (for example $0,1 \mathrm{uF}+220 \Omega$).

Warning: Connected varistors are defined for max. working voltage 250 Vef. At switching some motors in a single-phase connecting with a capacitor, for phase shift, can make it on winding connected through the capacitor permanent increasing the working voltage over setting of value allowable varistors voltage. Therefore we recommend to connect electric drive per protective relays (see page 13)

Coherent analog output (16 bit) is possible to set as a control or as measured value output. Control coherent analog output work duplicitly with relay outputs out1 and out2.

Adjustable ranges of analog output are 0-20 mA, 4-20 mA, 20-0 mA, 20-4mA for current signal and $0-10 \mathrm{~V}, 2-10 \mathrm{~V}, 10-0 \mathrm{~V}, 10-2 \mathrm{~V}$ for voltage signal.

Dates output is realised by serial communication line RS 232 or RS 485. The type of communication is Master-Slave. The controler is Slave.

2.4 Apparatus function

The controller APOSYS $10-1 \mathrm{xxx}$ makes a regulation to the constant value. Required value is setting in the menu COMP.

A type of regulation is possible to set in the menu REGO. Possibilities are:
ONOF two-state regulation
PROI proportional impulse regulation
PIDI PID impulse regulation
PID 3 PID three-state regulation
At setting of regulation ONOF is the analogue output controlled by PID algorithm. The same is for setting of regulations PIDI or PID3. At the setting of regulation PROI is the analogue output controlled by proportional algorithm.

2.5 Technical dates

Power supply

Power input
Fuse
Display

Decimal point
Input signals:
Number of inputs
Possibility of inputs signals
thermocouple „J"
thermocouple „K"
thermocouple „E"
thermocouple „T"
thermocouple „R"
thermocouple „S"
thermocouple „B"
sensor Pt100 by DIN IEC 751/A2
sensor Ni1000/6180ppm
sensor Ni1000/5000 ppm
current
voltage

APOSYS 10-xxx $1=1 / \mathrm{N} / \mathrm{PE}-230$ VAC ($+10-15 \%$) 50 Hz
APOSYS $10-\mathrm{xxx} 2=24$ VDC ($+10-15 \%$)
APOSYS $10-\mathrm{xxx} 3=24$ VAC ($+10-15 \%$) 50 Hz
max. 6 VA
for power supply $230 \mathrm{VAC}-0,05 \mathrm{~A}$ (T 50 mA)
for power supply $24 \mathrm{VAC}, 24 \mathrm{VDC}-0,63 \mathrm{~A}$ (T 630 mA)
-999~9999
red double four point LED
height of mark 10 mm and $7,62 \mathrm{~mm}$
setting by program
1
$-200 \sim 1200^{\circ} \mathrm{C}$
$-200 \sim 1300^{\circ} \mathrm{C}$
$-200 \sim 1000{ }^{\circ} \mathrm{C}$
$-200 \sim 400^{\circ} \mathrm{C}$
$-50 \sim 1700^{\circ} \mathrm{C}$
$-50 \sim 1700{ }^{\circ} \mathrm{C}$
$-250 \sim 1800{ }^{\circ} \mathrm{C}$ with linearization from $400^{\circ} \mathrm{C}$
$-80 \sim 800^{\circ} \mathrm{C}$
$-50 \sim 200^{\circ} \mathrm{C}$
$-50 \sim 200{ }^{\circ} \mathrm{C}$
$4 \sim 20 \mathrm{~mA}, 0 \sim 20 \mathrm{~mA}$
$0 \sim 10 \mathrm{~V}, 0 \sim 50 \mathrm{mV}$

Compensation of thermocouples comparison ends :
inner
outer
Outputs:
switching-on
analogue
dates

Temperature coefficient
Measuring accuracy
Speed
Resolution
Calibration
Processor
accuracy $0,5^{\circ} \mathrm{C}$ at temp. $20^{\circ} \mathrm{C}$
temperature coefficient $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}$ or $70^{\circ} \mathrm{C}$ setting by program
2 x relay $250 \mathrm{VAC}, 2 \mathrm{~A}$
2 x relay $250 \mathrm{VAC}, 2 \mathrm{~A}$ for alarm
16 bit D / A converter, isolated or bare
current range $0 \sim 20 \mathrm{~mA}, 4 \sim 20 \mathrm{~mA}, 20 \sim 0 \mathrm{~mA}, 20 \sim 4$
mA - loading resistance max. 500Ω
voltage range $0 \sim 10 \mathrm{~V}, 2 \sim 10 \mathrm{~V}, 10 \sim 0 \mathrm{~V}, 10 \sim 2 \mathrm{~V}-$
loading resistance min. $10 \mathrm{k} \Omega$
communication line RS 232/RS 485
speed 9600 Baud
11 bits, communication master-slave
$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\pm 0,1 \%$ from range ± 1 digit
5 measurements / s
by decimal point state, max. 0,01
at $25^{\circ} \mathrm{C}$ and 40% r.h.
SAB 80C535N

Data redundancy
Auxiliary voltage
Type of apparatus
Dimensions
Mounting hole in panel
Keyboard
Operating temperature
Weight
Steady time
Coverage
Safety rate
Bonding
Data communication connector
electrically EEPROM
20 VDC, max. 25 mA (electronic fuse)
panel
$48 \times 96 \times 119 \mathrm{~mm}$
$43,5 \times 90,5 \mathrm{~mm}$ (with holes $\varnothing 3 \mathrm{~mm}$ in corners)
4 foil keys
$0 \sim 60^{\circ} \mathrm{C}$
$0,5 \mathrm{~kg}$
to 5 min after switch-on
IP 54 (front panel)
I
terminal block (max. $2,5 \mathrm{~mm}^{2}$)
Canon 9V

2.6 Dimensions

2.7 Mounting instruction

The controller handle in the mounting hole with help two holders. Wires are connected to screw connectors on rear panel of the controller. Connectors are as 4 single taking down construction blocks: connectors 1-5-block of inputs, connectors 6-9-block of analog output, connectors 10-17 - block of relays outputs, connectors 18, 19, 20 - block of power supply. Every block of connectors is possible to eject in the direction back after lock force overcoming. Wires are possible to connect to taking down blocks and then connect all blocks to the controller.Connector Cannon is for connecting of serial communication line RS 232 or RS 485.
Double switch DIP is like a hardware protection of setting dates.
data transcription forbid - in this position of DIP switches is possible parameters arbitrary to change. But after switch-on and switch-off of power supply is setting parameters shown before of data transcription forbid.

2.8 Connecting of terminal blocks

Measure ranges of inputs quantities

Type	range
thermocouple J	$-200 \sim 1200^{\circ} \mathrm{C}$
thermocouple K	$-200 \sim 1300^{\circ} \mathrm{C}$
thermocouple E	$-200 \sim 1000^{\circ} \mathrm{C}$
thermocouple T	$-200 \sim 400^{\circ} \mathrm{C}$
thermocouple R	$-50 \sim 1700^{\circ} \mathrm{C}$
thermocouple S	$-50 \sim 1700^{\circ} \mathrm{C}$
thermocouple B	$-250 \sim 1800^{\circ} \mathrm{C}$ with linearization from
	$400^{\circ} \mathrm{C}$
sensor Pt100	$-80 \sim 800^{\circ} \mathrm{C}$
sensor Ni1000/6180 ppm	$-50 \sim 200^{\circ} \mathrm{C}$
sensor Ni1000/5000 ppm	$-50 \sim 200^{\circ} \mathrm{C}$
current signal 4 $\sim 20 \mathrm{~mA}$	optional
current signal 0 20 mA	optional
voltage signal 0 $\sim 10 \mathrm{~V}$	optional
voltage signal 0 $\sim 50 \mathrm{mV}$	optional

2.9 Connecting of main distribution frame

In the main distribution frame is necessary to set with delivered bonds a type of elect input signal, optionally a analog output type. The main distribution frame is allowable after taking down of connectors 1-5 and 6-9. Possibilities: see the picture. On the picture is demonstrate the rear side of apparatus after taking down of connectors.

At a selection of the type of input signal and the type of analogue signal is necessity to respect the bonds setting for parameters setting in the programming mode.

2.10 Block diagram of inner connexion

Block diagram

2.11 Input signals connection

2.11.1 Thermocouple connection

2.11.2 Resistive sensor Pt100 or Ni1000 connection

2.11.3 Passive converter 4~20 mA connection

2.11.4 Active signal $0(4) \sim 20 \mathrm{~mA}$ connection

2.11.5 Voltage signal 0~10 V connection

2.11.6 Voltage signal 0~50 mV connection

2.11.7 Electric drive with pulse control recommended connection

3 Control

3.1 Control characteristic ONOF

The control ONOF is realize on the first and second output. The control compare input signal with required value and by shift in the menu REGO setting evaluate its variation from required value. At overrun set the output. Concurrently with the ONOF control run PID calculation. Of action intervention from PID we have send to analog output.

3.1.1 Block ONOF control

3.1.2 ONOF control - first circle

3.1.3 ONOF control - second circle

3.2 Characteristic PID control PIDI, PID3, automatic control

The control is drive by algorithm PID from formula:

$$
\mathrm{u}(\mathrm{k})=\mathrm{K} *\left\{\mathrm{e}(\mathrm{k})+\frac{\mathrm{T}}{\mathrm{Ti}} * \sum_{\mathrm{i}=0}^{\mathrm{k}} \mathrm{e}(\mathrm{i}-1)+\frac{\mathrm{Td}}{\mathrm{~T}} *[\mathrm{e}(\mathrm{k})-\mathrm{e}(\mathrm{k}-1)]\right\}
$$

$\mathrm{u}(\mathrm{k})$ the action intervention in the k -moment
K the amplification (_PB_)
e (k) the deviation from the required value in the k -moment
T sampling time (TPID)
Ti integration constant (INT)
Td derivative constant (DER)
The PID controller adjustment compile in suitable setting its constants. The method AUTO-TUNE (starting in the TUNE menu) lead to the basic calculation of setting constants. Is necessary to allow for that count settings are starting oriental values only. In the practice is always necessary the controller at the putting into operation to tune up.

At the average regulation action has controlled value even two-four times overswing after the required value reaching and then to fix.

Basic setting of constants is possible to do next way.
The controller is to set as proportional ,it is mean that derivative and integrating constant are eliminated. After that is find out a critical amplification K_{r} - it is mean such value K , when is the controller on a stability limit. Is to set smaller K (for exam.1) at first , and after previous initiation to stable state with changing of the required value is done a control run. After system fixation to steady state increase K and change the required value. This action repeat to the time until the system is amplitude. This value correspond to P_{kr}, length of vibration period is T_{kr}. According these values is calculated the basic system parameters setting:
$\mathrm{K}=0,5 * \mathrm{~K}_{\mathrm{kr}} \quad \mathrm{Ti}=0,8 * \mathrm{~T}_{\mathrm{kr}} \quad \mathrm{Td}=0,12 * \mathrm{~T}_{\mathrm{kr}}$
The value of the sampling period is to set so as during transition action come to 6-10 sampling.

When you get at the basic setting of the controller parameters (AUTO-TUNE) the unit step response with the right fast growth but with the big overshoot or with next big overswings you could let the proportional constant _PB_ and to change of time constants integration constant (INT) to increase and derivative constant (DER) to decrease. It will be the basic unit step response the other way round has character of the system with the big damping (the so-called with the long time of control and non over control) is the necessity to reduce the integration constant (INT) and to increase the derivative constant (DER).

The magnitude of the action intervention at moment is possible to subtract in the PROC menu.

3.2.1 Block PID3 control

Block of control process by the help of PID algorithm the rated diversion e, which is converted to the action intervention. Signal of the action intervention is converted in the impulse module to the output relay. By key arrow to right we come over to manual drive setting. By the parameter DSER we set the servo-unit overtravel time. If we increase DSER, then at the action intervention change about 1% is the impuls run time lengthened.

3.2.2 Block PIDI control

Block of control process by the help of PID algorithm the rated diversion e, which is converted to the action intervention. Signal of the action intervention is converted in the impulse module to the output relay. By key arrow to right we come over to manual drive setting. By the parameter TPID is define impuls period.

3.2.3 Manual control

By the key ,,arrow to right" in the main menu the controller switch over to manual driving. On the upper line is in turns display RUC_ and the measured value. On the bottom line is possible by arrows up and down manually to set the servo-unit position. The magnitude of the action intervention at moment is on the bottom line of the display. For return to the automatic control is necessity to depress the key MODE. Switchover from the manual control to the automatic control is non- impulse.
When is the control in STOP state, is not possible manually to set the action intervention (the servo-unit position).

3.3 Characteristic of the proportional control PROI

$u(k)=K * e(k)+P s$
$\mathrm{u}(\mathrm{k}) \quad$ the action intervention in the k -moment
K the amplification (proportional constant _ $P B_{_}$)
$\mathrm{e}(\mathrm{k})$ the deviation from the required value in the k -moment
Ps power shift (PS)
For example:
There are set values: required value $\mathrm{SP}=100^{\circ} \mathrm{C}$
the amplification_PB_=5
power shift PS $=\overline{10} \%$
The measured temperature in k -moment is $90^{\circ} \mathrm{C}$. The magnitude of action intervention is calculated from the previous formula:
$u(k)=5 * 10+10=60 \%$ of action intervention
This value is possible to subtraction in the PROC menu.
At seting control proportional impulse PROI this information demonstrate the time of the switching-on of the output in the setting period PER. For example there is the period time set 10 s , is at 60% of the action intervention the control output 6 s switch-on and 4 s switchoff.
As long as you use the proportional regulation for the heating you set in the amplification menu _PB_ the positive value. The function heating is achieve on the control output out1, output out 2 work inverse against output out1.

As long as you use the proportional regulation for the cooling you set in the amplification menu_PB_ the negative value.

3.4 Block of analog output

Analog output is possible to set as the control (typical) output or as the measured value output by the help of the parameter A-IN. Analog output is possible to set as increasing or decreasing in the menu AOUT. By the help of jumpers under rear terminal block we set voltage or current output (see page 8).

4 Programming manual

In the programming manual is a detail transcription of electing parameters setting of controller. For using of the controller is necessity to adapt the controller to concrete user application by setting of the required parameters. Standard values are in the programming mode setting by producer. And they are show in a limit values chart (page 33). Before the programming is necessity to control if the switch for data hardware protection is in the position off. After the programming is possible to protect parameters against data transcription by change-over of both poles of switch to position ON. It's mean that parameters is possible to change but after switch-off and switch-on of power supply are show parameters set before of data transcription forbid.
At new parameters setting in the menu MODE the controller work with original parameters. After the menu MODE exit by „arrow to right" run the up-dating and record new setting dates.
As long as in the programming course do not be pressed the arbitrary key during 1 minute the controller automatically come over to main menu without setting parameters record (function TIME OUT).

4.1 Block diagram for operating

4.2 Parameters meaning

Level MODE

Icon COMP - required value setting and action intervention view and drive position
$5 P \quad$ required value for the control
PROC magnitude of action intervention view (\%) When is the control in the STOP state is not possible the action intervention set manually (servo-unit position). Relay 1 and 2 are switch-off.
T 5 temperature of binding clips view $\left({ }^{\circ} \mathrm{C}\right)$

Icon RLRx - alarm setting for outputs 3 and 4. For alarm is possible to set switching logic (output switch is active if is not the alarm, if need be a converse action) and alarm mode.

RRLG
CONS processed, belong to measured value only (see graph page 23) DRIF relative, deduce from the required value as the allowed deviation (see graph page 24)
WiN processed with allowed deviation zone, belong to measured value only (see graph page 25)
DU4 relative with allowed deviation zone, deduce from the required value, as allowed deviation (see graph page 26)

RELE output relay state at alarm limit overstepping Possibilities:
OFF at alarm limit overstepping the relay switch-off _ON_ at alarm limit overstepping the relay switch-on
SPLO bottom alarm limit (this parameter at CONS and DRIF setting have not importance)
SPHI upper alarm limit
HSST alarm hysteresis

4.2.1 Alarm mode, processed, belong to measured value (CONS)

RELAY OFF

0
Example:

1) At relay setting ON and $\mathrm{SPAH}=130^{\circ} \mathrm{C}, \mathrm{HYST}=2^{\circ} \mathrm{C}$. If will be the measured temperature greater than $130^{\circ} \mathrm{C}$, output relay switch-on. If the measured temperature fall below $128^{\circ} \mathrm{C}$, output relay switch-off.
2) At relay setting OFF and $\mathrm{SPHI}=130^{\circ} \mathrm{C}, \mathrm{HYST}=2^{\circ} \mathrm{C}$. If will be the measured temperature greater than $130^{\circ} \mathrm{C}$, output relay switch-off. If the measured temperature fall below $128^{\circ} \mathrm{C}$, output relay switch-on.

4.2.2 Relative alarm mode, deduce from the required value as the allowed

 deviation (DRIF)

RELAY OFF

Example:

1) At relay setting ON and $\mathrm{SP}=120{ }^{\circ} \mathrm{C}$, $\mathrm{SPHI}=10^{\circ} \mathrm{C}$, $\mathrm{HYST}=2{ }^{\circ} \mathrm{C}$. If will be the measured temperature greater than $130^{\circ} \mathrm{C}$, output relay switch-on. If the measured temperature fall below $128^{\circ} \mathrm{C}$, output relay switch-off.
2) At relay setting OFF and $\mathrm{SP}=120{ }^{\circ} \mathrm{C}$, $\mathrm{SPHI}=10^{\circ} \mathrm{C}$, $\mathrm{HYST}=2^{\circ} \mathrm{C}$. If will be the measured temperature greater than $130^{\circ} \mathrm{C}$, output relay switch-off. If the measured temperature fall below $128^{\circ} \mathrm{C}$, output relay switch-on.

4.2.3 Processed alarmu mode with allowed deviation zone, belong to measured value only (WIN)

0

Example:

1) At relay setting ON and $\mathrm{SPLO}=120^{\circ} \mathrm{C}, \mathrm{SPHI}=150^{\circ} \mathrm{C}$, $\mathrm{HYST}=2^{\circ} \mathrm{C}$. If will be the measured temperature to move among $120^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}$ output relay will be switch-off. If the measured temperature fall below $120^{\circ} \mathrm{C}$ or if overstep the value $150^{\circ} \mathrm{C}$, output relay will switch-on. To the relay reentry switching-off come at temperature increase above $122^{\circ} \mathrm{C}$ or in the second case at decrease below $148{ }^{\circ} \mathrm{C}$.
2) At relay setting OFF and $\mathrm{SPLO}=120^{\circ} \mathrm{C}, \mathrm{SPHI}=150^{\circ} \mathrm{C}, \mathrm{HYST}=2^{\circ} \mathrm{C}$. If will be the measured temperature to move among $120^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}$ output relay will be switch-on. If the measured temperature fall below $120^{\circ} \mathrm{C}$ or if overstep the value $150{ }^{\circ} \mathrm{C}$, output relay will switch-off. To the relay reentry switching-on come at temperature increase above $122^{\circ} \mathrm{C}$ or in the second case at decrease below $148^{\circ} \mathrm{C}$.

4.2.4 Alarmu relative mode with allowed deviation zone, deduce from the required value, as allowed deviation (DWI)

Example:

1) At relay setting ON and $\mathrm{SP}=130^{\circ} \mathrm{C}$, $\mathrm{SPLO}=-20^{\circ} \mathrm{C}$, $\mathrm{SPHI}=20^{\circ} \mathrm{C}$, $\mathrm{HYST}=2{ }^{\circ} \mathrm{C}$. If will be the measured temperature to move among $110^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}$ output relay will be switch-off. If the measured temperature fall below $110^{\circ} \mathrm{C}$ or if overstep the value 150 ${ }^{\circ} \mathrm{C}$, output relay will switch-on. To the relay reentry switching-off come at temperature increase above $112^{\circ} \mathrm{C}$ or in the second case at decrease below $148^{\circ} \mathrm{C}$.
2) At relay setting OFF and $\mathrm{SP}=130^{\circ} \mathrm{C}$, $\mathrm{SPLO}=-20^{\circ} \mathrm{C}, \mathrm{SPHI}=20^{\circ} \mathrm{C}$, $\mathrm{HYST}=2^{\circ} \mathrm{C}$. If will be the measured temperature to move among $110^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}$ output relay will be switch-on. If the measured temperature fall below $110^{\circ} \mathrm{C}$ or if overstep the value 150 ${ }^{\circ} \mathrm{C}$, output relay will switch-off. To the relay reentry switching-on come at temperature increase above $112{ }^{\circ} \mathrm{C}$ or in the second case at decrease below $148^{\circ} \mathrm{C}$.

Icon PID - PID constant for control setting

$P B$	amplification (see characteristic PID control)
INT	integration constant
$D E R$	derivative constant
TUME	automatic tuning PID constants

Icon REGO - the others control parameters
TYPE in the menu we set the control required type:
OMOF two-state control
At set control ONOF run the calculation PID and the action intervention is possible to send on analog output.
PROI a proportional impulse control
PIDI PID impulse control
PID 3 PID three-state control
$8 T \quad$ automatic output changes timer (s) for ONOF control
PHER heating shift for ONOF control (see page 15)
$P[00$ cooling shift for ONOF control (see page 15)
HHER heating hysteresis for ONOF control (see page 15)
HCOO cooling hysteresis for ONOF control (see page 15)
$R E$ _ 1 output relay state at required value limit overstepping for ONOF control
$R E _2 \quad$ output relay state at required value limit overstepping for ONOF control Possibilities:
OFF at limit overstepping the relay switch-off
0 H at limit overstepping the relay switch-on
DSER drive overtravel time (in seconds) for three-state control. If we increase DSER, then at the action intervention change about 1% is the impuls lifetime extended.
DERD non-sensitivity (\%)
As long as is requirement for drive position change from PID controller less then set non-sensitivity, drive position is unchanged.
$\mathrm{F} 2 \quad$ control magnitude digital filter (FIR)
With setting of higher value the action intervention damping is increased and by this is slowed down the drive response.
$T P 1 D$ sampling time period (in seconds) in the setting interval is running the samples drain and the PID constant re-counting for regulation.
PB amplification setting for PROI control
P5 power shift value setting for PROI control
PER period time setting PWM puls for PROI control

Icon SE M 5 - input signal parameters setting

TYPE	input sensor type Possibilities:	
	- U -	thermocouple „J"
	CRRL	thermocouple „K"
	_ E^{+}	thermocouple „E"
	- - ${ }^{\text {- }}$	thermocouple „T"
	- - ${ }^{\text {_ }}$	thermocouple „R"
	- 5	thermocouple „S"
	- _ 8	thermocouple „B"
	_ PT _	sensor Pt100
	Mi_6	sensor Ni1000/6180ppm
	Mi_5	sensor Ni1000/5000ppm
	4.20	current signal 4-20 mA
	0 _ 20	current signal 0-20 mA
	0 _ 10	voltage signal 0-10 V
	50 mv	voltage signal 0-50 mV

If you set the temperature sensor (thermocouple, Pt100 or Ni1000), above the display light-on the red check light " "C".
At input signal type change is necessary to check rightness of jumpers in the main distribution frame option (see connecting of main distribution frame page .8).
_ DP _ decimal point position
Setting decimal point position is valid for most of numeric parameters set-up.
STRS input range beginning (start sensor)
You set the beginning of the measuring range the input value. The parameter have the importance at electing of current ($4-20 \mathrm{~mA}$ or $0-20 \mathrm{~mA}$) or voltage ($0-10 \mathrm{~V}$ or $0-50 \mathrm{mV}$) input signal only. If you set as the type of sensor the thermocouple Pt 100 or Ni 1000 it is not necessary to set the start of the sensor. For example:
You want to connect the sensor with the $4-20 \mathrm{~mA}$ output and corresponding for the temperature -30 to $+70^{\circ} \mathrm{C}$. It is that the sensor starting STRS is necessity to set: -30. For the sensor type SENS is necessity to set 4-20 mA.
EMDS input range end (end sensor)
You set the end of the measuring range the input value. The parameter have the importance at electing of current ($4-20 \mathrm{~mA}$ or $0-20 \mathrm{~mA}$) or voltage ($0-10$ V or $0-50 \mathrm{mV}$) input signal only. If you set as the type of sensor the thermocouple Pt 100 or Ni 1000 it is not necessary to set the end of the sensor. For example:
You want to connect the sensor with the $4-20 \mathrm{~mA}$ output and corresponding for the temperature -30 to $+70^{\circ} \mathrm{C}$. It is that the sensor end ENDS is necessity to set: 70. For the sensor type SENS is necessity to set 4-20 mA.
OFFS offset (shift) of measure
Parameter is for setting for example: resistor compensation of inputs wires for Pt 100 at two-wires connection etc. Generally is possible by offset to compensate any measurement inaccuracy. As long as is not necessity to set the any shift or compensation set 0 .
Example of inputs wires for Pt 100 compensation at two-wires connection:

COMP thermocouple cold end compensation Parameter have meaning at thermocouple choice only. Compensation possibilities: _ MO _ without compensation TS _ compensation to temperature of terminal boxes (compensation is ensure by inner resistive sensor Pt1000)
$20^{\circ} \mathrm{C} \quad$ compensation to temperature $20^{\circ} \mathrm{C}$ 50° C compensation to temperature $50^{\circ} \mathrm{C}$ 70° [compensation to temperature $70^{\circ} \mathrm{C}$

Icon DRCD-analog output parameters setting
R_IM input magnitude for the analog output Possibilities:

$$
\begin{array}{ll}
\text { YOUT } & \text { control magnitude - analog output behave as control } \\
\text { MERS } & \text { measured value - analog output generate the output current } \\
& \text { (voltage) commensurate with the measured value }
\end{array}
$$

ROUT analog output election Possibilities:

$0-20$	$0-20 \mathrm{~mA}, 0-10 \mathrm{~V}$
$4-20$	$4-20 \mathrm{~mA}, 2-10 \mathrm{~V}$
$20-0$	$20-0 \mathrm{~mA}, 10-0 \mathrm{~V}$
$20-4$	$20-4 \mathrm{~mA}, 10-2 \mathrm{~V}$

RSTR measured value analog output start
The parameter have importance in case only at the measured value MEAS election in the menu A_IN. The measured value is set and correspond to analog output start. Setting example:
If you need that analog output $0-10 \mathrm{~V}$ correspond to the measured value on the display in among $0-100^{\circ} \mathrm{C}$. This means that analog output ASTR start is necessary to set 0 . Condition is the measured value MEAS setting in the menu A_IN and the analog output election $0-20 \mathrm{~mA}$ in the menu AOUT and setting of main distribution frame (see page 8).
REMD measured value analog output end
The parameter have importance in case only at the measured value MEAS election in the menu A_IN. The measured value is set and correspond to analog output end. Setting example:
If you need that analog output $0-10 \mathrm{~V}$ correspond to the measured value on the display in among $0-100^{\circ} \mathrm{C}$. This means that analog output AEND end is necessary to set 100 . Condition is the measured value MEAS setting in the menu A_IN and the analog output election $0-10 \mathrm{~V}$ in the menu AOUT and setting of main distribution frame (see page 8).

Icon $E R R 0$ - Outputs state at sensor trouble
The controller evaluate the input sensor trouble by sign ERRO on the bottom line of the display. At the input sensor trouble is possible to set arbitrary output relays state and analog output. The controller signal the input sensor trouble as long as the measured value is out of following limits:

Pt100	$-80-802{ }^{\circ} \mathrm{C}$
Ni1000/5000 ppm	$-50-202{ }^{\circ} \mathrm{C}$
Ni1000/6180 ppm	$-50-202^{\circ} \mathrm{C}$
thermocouple J	$-210-1200{ }^{\circ} \mathrm{C}$
thermocouple K	$-200-1372{ }^{\circ} \mathrm{C}$
thermocouple E	$-200-1000^{\circ} \mathrm{C}$
thermocouple T	$-200-400{ }^{\circ} \mathrm{C}$
thermocouple R	$-50-1768{ }^{\circ} \mathrm{C}$
thermocouple S	$-50-1768{ }^{\circ} \mathrm{C}$
thermocouple B	$-250-1820^{\circ} \mathrm{C}$
$0-20 \mathrm{~mA}$	$>21 \mathrm{~mA}$
$4-20 \mathrm{~mA}$	$3,6-21 \mathrm{~mA}$
$0-10 \mathrm{~V}$	$>10,5 \mathrm{~V}$
$0-50 \mathrm{mV}$	$>75 \mathrm{mV}$

RE12 outputs out 1 and out 2 state at the sensor trouble
_ MO _ out 1 and out 2 without response to the sensor trouble (response by parameters in the icon PID)
OPEN out 1 switch-on and out 2 switch-off at the sensor trouble SHUT out 1 switch-off and out 2 switch-on at the sensor trouble OFF out 1 and out 2 switch-off at the sensor trouble
RE-3 output out 3 state at the sensor trouble

NO	out 3 without response to the sensor trouble (response by parameters in the icon ALA1)
OH	out 3 switch-on at the sensor trouble out 3 switch-off at the sensor trouble

RE-4 output out 4 state at the sensor trouble

MO	out 4 without response to the sensor trouble (response by parameters in the icon ALA2)
OM	out 4 switch-on at the sensor trouble
OFF	out 4 switch-off at the sensor trouble

YOUT analog output state at the sensor trouble
_ MO _ analog output without response to the sensor trouble (response by parameters in the icon DACO)
O-m $\boldsymbol{m} \quad$ analog output set to $0 \mathrm{~mA}(0 \mathrm{~V})$ at the sensor trouble
$20 \mathrm{mR} \quad$ analog output set to $20 \mathrm{~mA}(10 \mathrm{~V})$ at the sensor trouble

Icon SST _ - the others parameters setting
OPLO optic alarm bottom limit (at the measured value decrease under set value twinkle the value on the display).
OPHI optic alarm upper limit (at the measured value increase under set value twinkle the value on the display).
FILT input signal filter by the filter value increasing come to the controller response deceleration to the input magnitude change and respectively by the filter value decreasing come to the controller response acceleration to the input magnitude change. Filter have the effect for the measured value representation on the display and on the control.
PR55 access password
With the access password setting is possible to prohibit for the unqualified intervention to control parameters. The PASS password serve for access to all parameters settings. From the production is set the 0 password. In this case is the controller behaviour as world be setting as the no password and the access to the setting is not limited. If you set the arbitrary number password is possible to enter to parameters setting after the password adjust only. If you want change the password you have to secure the access to the password adjusting with the knowledge a the old access password. As long as you will forget this password you set code 555 with its help you will get to the password adjusting.
The controller demand the password always one time in the each icon only. For example when you in the SENS icon set the _DP_ parameter (decimal point position) at the enter to the parameter setting the controller demand the access password. As long as you set the password right, you will have the free access to all the others parameters below the SENS icon (TYPE, STRS, ENDS, OFFS, CoMP).
LOC _ keyboard lock for the required value direct setting Possibilities:
MO keyboard unlocked
YES _ keyboard locked
If is the keyboard unlocked is possible in the main menu by keys UP and DOWN the required value SP direct to set. After keyboard lock is possible the required value set as much as after program mode entry.
At the programming control RAMP/JUMP keys "UP" and "DOWN" are not active.

4.3 Setting examples

With the same way is possible to set the next parameters by the block diagram of the operation.
As long as in the programming course do not take after 1 min to depress any key the controller automatically come over to the main menu without setting parameters record (socalled TIME OUT). After exit the menu MODE by key "SET" the set parameters are up-dated and PID parameters are re-counted and if is the hardware protection in position OFF, so to EEPROM parameters record will done too. The dates are for the data memorize after power supply failure.

4.4 Parameters limit values

Code	Importance	Limit values	From production	From operation
SP	required value	-999-9999	0.0	
PROC	magnitude of action intervention	0-100\%	-	-
TS	binding clips temperature view ${ }^{\circ} \mathrm{C}$	-	-	-
RALA	alarm mode	CONS, DRIFT, WIN, DWIN	CONS	
RELE	output alarm relay state	OFF/ON	ON	
SPLO	alarm value	-999-9999	0.0	
SPHI	alarm value	-999-9999	0.0	
HYST	alarm hysteresis	0-9999	1.0	
-PB-	amplification	-500-500		
INT-	integration constant	0,01-9999	100.0	
DER-	derivative constant	0.01-9999	10.0	
TUNE	automatic constants tuning	NO/ YES	-NO-	
AT	automatic output changes timer	0-10 s	1 s	
PHEA	heating shift	-999-9999	0.0	
PCOO	cooling shift	-999-9999	0.0	
HHEA	heating hysteresis	0-9999	0.0	
HCOO	cooling hysteresis	0-9999	0.0	
RE-1	output relay state	OFF/ON	OFF	
RE-2	output relay state	OFF/ON	ON	
DSER	drive overtravel time	5-1000 s	60	
DEAD	non-sensitivity	0-10\%	2 \%	
F2	control magnitude filter	0-16	16	
TPID	sampling time period	0,2-10	1	
PS	static constant	0-100\%	0	
PER	Period PWM	1-60s	10s	
TYPE	sensor type	thermocouple J, K, E, T, R, S, B Pt100 Ni1000/6180ppm Ni1000/5000ppm $4-20 \mathrm{~mA}$ $0-20 \mathrm{~mA}$ $0-10 \mathrm{~V}$ $0-50 \mathrm{mV}$	Pt100	
-DP-	decimal point	0., 0.0, 0.00	0.0	
STRS	start sensor	-999-9999	0.0	
ENDS	end sensor	-999-9999	100.0	
OFFS	Offset	-999-9999	0.0	
CoMP	thermocouple compensation	-NO-, binding clips	binding	

	type	$\begin{gathered} \text { temperature, } 20^{\circ} \mathrm{C}, \\ 50^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { clips } \\ \text { temperatur } \\ \mathrm{e} \\ \hline \end{gathered}$	
A-IN	input magnitude for the analog output	control magnitude, measured value	control magnitude	
AOUT	analog output election	$\begin{gathered} 0-20 \mathrm{~mA}(0-10 \mathrm{~V}), 5- \\ 20 \mathrm{~mA}(2-10 \mathrm{~V}), \\ 20-0 \mathrm{~mA}(10-0 \mathrm{~V}), 20 \\ -4 \mathrm{~mA}(10-2 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & 0-20 \mathrm{~mA} \\ & (0-10 \mathrm{~V}) \end{aligned}$	
ASTR	measured value analog output start range	-999-9999	0.0	
AEND	measured value analog output end range	-999-9999	100.0	
RE12	output relay 1 and 2 state at the sensor trouble	-NO-, OPEN, SHUT, OFF	-NO-	
RE-3	output relay 3 state at the sensor trouble	-NO-, ON, OFF	-NO-	
RE-4	output relay 1 and 2 state at the sensor trouble	-NO-, ON, OFF	-NO-	
YOUT	analog output state at the sensor trouble	-NO-, $0 \mathrm{~mA}, 20 \mathrm{~mA}$	-NO-	
OPLO	optic alarm low	-999-9999	0.0	
OPHI	optic alarm high	-999-9999	100.0	
FILT	input signal filter	0-32	0	
PASS	access password	0-9999	0	
LOC	keyboard lock	NO/YES	NO	
FILT	input signal filter	0-32	0	

5 Communication protocol

5.1 Protocol description

Communication protocol is from protocol PROFIBUS layer 2. Data part (layer 7) implemented the protocol.
Communication is of the type master - slave and enable the two-ways communication between systems. The communication use the interface RS 232 or RS 485.

Telegram mark (UART - Character)

Protocol:

Every UART - have a character 11 bits, and so 1 st start-bit (ST) with signal logic " 0 ", 8th inform bits (I), 1st parity bit for even parity (P) with signal logic "1" and 1th stop-bit (SP) with signal logic "1". Transmit speed 9600 Bd .

Communication conditions:

Communications are invoked by superior communications participant on a principle request answer. This principle allowed a addition of greater users number to superior system on the interface RS-485. Controlers and sensors behave as a slave user (slave).
From a time aspect is necessary to observe next conditions:
a) between single bytes transmited from superior system have to be a shorter delay than treble of a time necessary for one byte transmitting.
b) between received answer and transmited next report have to be a rest on the line longer than treble of a time necessary for one byte transmitting.
c) if come by receiving side to line protocol error detecting (frame error, parity, unpassing line, breaking above mentioned conditions), or at error in transmission protocol (start parity error, ended mark, telegram length), the receiving side the report do not work and do not answer for that. In case do not grant requirement for transmission or for dates writting (the apparatus do not contain dates), send the error report with SD1 and FC = 2 (negative confirmation).
d) between last byte of transmited report and first byte of receiving answer is delay at minimum identical as the time necessary for one byte transmitting.

5.2 LAYER 2

Format of telegrams with firm length without data pole:

a) question

SD1	DA	SA	FC	FCS	ED

b) answer

SD1	DA	SA	FC	FCS	ED

Format of telegram with constant length

Telegram start with SD1 and FC=0x69 and end ended mark ED.
Positive answer is telegram with constant lenght with $\mathrm{FC}=0$. Negative answer $\mathrm{FC}=2$.

Example of setting format of telegram with firm length without dates pole:

REQUEST $100204696 F 16$	Number of transmitting marks: 6	
ANSWER 100402000616	Number of receiving marks:	6

Format of telegrams with variable length of information pole:

a) question

SD2	LE	LEr	SD2	DA	SA	FC	DATA	FCS	ED

b) answer

SD2	LE	LEr	SD2	DA	SA	FC	DATA	FCS	ED

Importance of used symbols

SD1 frame start (Start Delimiter), code 10H
SD2 frame start (Start Delimiter), code 68H
LE length of information pole (Length) start by bit DA and finished by bit before FCS. Length of pole 4-249.
$\mathbf{L E r} \quad$ repeating of bits length of the information pole (Lenght repeat)
DA address of target station (Destination Address)
SA address of supply station (Source Address)
FC řídící byte drive bit (Frame Control)
DATA pole of dates max 246 bits
FCS control sum (Frame Check Sum)
ED frame end (End Delimiter), code 16H

LE, LEr - Length of information pole

Both bits in the head of telegram with variable length of information pole contents numbers of bits of information pole. In this is count DA, SA, FC and DATA. Upset value LE is 4, highest 249 . By this possible to transmit 1-246 bits of dates.

DA, SA - Address of the station (DA - target, SA - supply)

Addresses can be in the range $0-126$, and the address 127 is use as global address for transmitting of messages for all stations. At setting of global address the apparatus receive only (do not transmitting). In the corresponding telegram is target address (DA) actually source address (SA) from appeal telegram.
Limitation: Maximal setting address is 126. Controllers and sensors can not increase the address by bits EXT, how is definite in PROFIBUS.

FC - Driving bit

Driving bit in the head of frame contents the transmit function and information to prevent for loss or doubling of message.

b8	b7	b6	b5	b4	b3	b2	b1
RES	1	FCB	FCV	FUNCTION			
	0	Stn - Type					

RES - reservation
b7 = $\mathbf{1}$ - frame of call (Send / Request)
FCB (Frame Count Bit): $\quad 0 / 1-$ alternated bit of sequence of calls
FCV (Frame Count Bit Valid): 0 - function FCB invalid
1 - function FCB valid
Controllers and sensors unused alternating bite FCB at $\mathrm{FCV}=1$, these bites have to have a value $\mathrm{FCB}=1$ and $\mathrm{FCV}=0$.

FUNCTION: frame of call b7 $=1$

code	function
0x03	Send Dat with Acknowledge Data sending with acknowledgement
$\mathbf{0 x 0 9}$	Request FDL - Status With Reply Request for Status
$\mathbf{0 x 0 C}$	Send and Request Data Sending and request for dates

b7 = $\mathbf{0}$ - frame of acknowledge or answer (Acknowledgement/Response)
Stn - Type (Station type a FDL - STATUS) - characterised the type of customer. Only passive customer $\Rightarrow \mathrm{b} 6$ and $\mathrm{b} 5=0$.

FUNCTION: frame of answers $\mathrm{b} 7=0$

code	function
0x00	Acknowledgement positive Positive acknowledgement
$\mathbf{0 x 0 2}$	Acknowledgement negative Negative acknowledgement
$\mathbf{0 x 0 8}$	Response FDL / FMA - Date data transmitting

FCS - control sum

Control sum is done with arithmetic data sum of information frame DA, SA, FC and DATA modulo 256 (100h) with ignore of higher frames arised by transfer 256 (100h).
$25 \mathrm{~h}=(24 \mathrm{~h}+30 \mathrm{~h}+37 \mathrm{~h}+52 \mathrm{~h}+48 \mathrm{~h}) \mathrm{MOD} \underset{\mathrm{FCS}-1}{100 \mathrm{~h}}$
For SD1 $\sum_{\text {DA }} \bmod 256 \quad$ for SD2 $\sum_{D A} \bmod 256$

Format of telegram with variable length of information pole:

Telegram start with SD2 and $\mathrm{FC}=0 \times 6 \mathrm{C}$ and end ended mark ED.
Request is reading from chart nr. 3 two bytes with offset $=0$.
Positive answer is telegram with constant lenght with $\mathrm{FC}=0$. Negative answer $\mathrm{FC}=2$.
REQUEST Number of transmitting marks: 14

$6808086802046 C 01030200007816$
ANSWER Number of receiving marks: 11
6805056804020806011516

Layer 7

Layer 7 (data part) implement the protocol. There are these services:

1) Reading of apparatus identification
2) Reading of firmware version
3) Reading of value
4) Record of value
5) Reading of apparatus state
6) Reading and record of synchronizing dates
7) Record of dates to EEPROM
8) Reading of apparatus identification - Identify telegram SD2 data part
a) question

SD2	LE	LEr	SD2	DA	SA	FC	RI	FCS	ED

FC		$0 \times 6 \mathrm{C}$
RI	REQ_IDENTIFY	0×00

b) answer

SD2	LE	LEr	SD2	DA	SA	FC	DATA	FCS	ED

FC 0x08
DATA Apparatus type name
2) Reading of firmware version - Version telegram SD2 data part
a) question

SD2	LE	LEr	SD2	DA	SA	FC	RV	FCS	ED

FC		$0 \times 6 \mathrm{C}$
RV	REQ_VERSION	0×04

b) answer

SD2	LE	LEr	SD2	DA	SA	FC	DATA	FCS	ED

FC 0x08
DATA Apparatus version name

3) Reading of dates - Read

Reading value is determinate by chart, bytes number and offset.
a) question

| SD2 | LE | LEr | SD2 | DA | SA | FC | RR | TC | PB | OFH OFL | FCS | ED |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

FC 0x6C
RR REQ_READ 0x01
TC TABULKA ČíSLO used chart number
PB POČET_BYTE bytes number in char
OFH OFFSET shift in chart high byte
OFL OFFSET shift in chart low byte
b) answer

SD2	LE	LEr	SD2	DA	SA	FC	1 - n byte by chart	FCS	ED

Positive acknowledgement (SD2, FC = 08), in error case (SD1, FC = 2).
FC 0x08
Dates $\quad 1-\mathrm{n}$ byte by chart

4) Record of one value - Write

Record value is determinate by chart, bytes number and offset.
a) question

SD2	LE	LEr	SD2	DA	SA	FC	RW	TC	PB OFH OFL	DT	FCS	ED

FC 0x63
RW REQ_WRITE 0x02
TC TABULKA_ČÍSLO used chart number
PB POČET_BYTE bytes number in chart
OFH OFFSET shift in chart high byte
OFL OFFSET shift in chart low byte
DT DATA sended dates n byte (PB byte)
b) answer

Positive acknowledgement ($\mathrm{SD} 1, \mathrm{FC}=0$), in error case $\mathrm{FC}=2$.

SD1	DA	SA	FC	FCS	ED

5) Reading of apparatus state

telegram SD2 data part
a) question

SD2	LE	Ler	SD2	DA	SA	FC	RU	FCS	ED

FC		$0 \times 6 \mathrm{C}$
RU	REQ_Unit_Status	0×03

b) answer

SD2	LE	Ler	SD2	DA	SA	FC	DATA	FCS	ED

FC		0×08
DATA	controller state	5 byte

4 byte	1 byte
measured value (float)	OUT (char)

OUT bit $=0$ output relay is switch-off
OUT bit $=1$ output relay is switch-on measured value $=$ float format
OUT bit D0 represent output 1
bit D1 represent output 2
bit D2 represent output 3
bit D3 represent output 4

6) Reading and record of synchronizing dates

Telegram SD2 data part.
a) question

SD2	LE	Ler	SD2	DA	SA	FC	RSS	FCS	ED

FC		0×63
RSS	REO SYNCHRO SAMPLING	0×05

b) answer after instruction REQ_SYNCHRO_SAMPLING with $\mathrm{FC}=0 \times 63$ achieve the measured value draft to memory. Positive acknowledgement (SD1, FC = 0), in error case (FC $=2$). At using a global address $\mathrm{DA}=127$ there is not any answer, the apparatus achieve the measured value draft only.
c) answer after instruction REQ SYNCHRO_SAMPLING with $\mathrm{FC}=0 \times 6 \mathrm{C}$

SD2	LE	Ler	SD2	DA	SA	FC	RES Measured value	FCS	ED

1 byte	4 - byte
RES	measured value (float)

\# define \quad FC $0 x 08$
\#define \quad RES $0 x 01$ indicate first draft
\#define \quad RES $0 x 00$ indicate, that one at least are dates read

7) Record of dates to EEPROM

The apparatus activity at record to EEPROM: the apparatus relocate setting dates from RAM to buffer. Compound and send answer. And then create the request for record to EEPROM. The record is performed from buffer after 1 byte in free time of processor.
The time needful for record is 2 sec . At next reading or recording next dates on communication line may the time needful for record to EEPROM rather elongate.
Record immunity to EEPROM is 100.000 cycles.
a) question

SD2	LE	Ler	SD2	DA	SA	FC	RWE	FCS	ED

FC 0x63
RWE REQ_WRITE_EEPROM 0x06
b) answer

Positive acknowledgement $(\mathrm{SD} 1, \mathrm{FC}=0)$, in error case $\mathrm{FC}=2$.

SD1	DA	SA	FC	FCS	ED

Importance of use symbols

The first data layer 7 part byte at request.

\# define REQ_IDENTIFY	0×00	request on the identification
\# define REQ_READ	0×01	request for data sending
\# define REQ_WRITE	0×02	request for data record
\# define REQ_Unit Status	0×03	request on the apparatus state
\# define REQ_VERSION	0×04	request on firmware version
\# define REQ_SYNCRO_SAMPLING	0×05	request on synchronous draft
\# define REQ_WRITE_EEPROM	0×06	request on record of dates to

request on the identification request for data sending request for data record request on the apparatus state request on firmware version request on record of dates to

Importance of charts and dates structures

Chart 0 for APOSYS 10-1xxx required value

Tabulka_číslo TC=0					
Importance	Code	range	type	bytes number	
Required value	SP	$-999-9999$	float	4	

Chart 0 for APOSYS 10-2xxx , APOSYS 10-3xxx

Tabulka_číslo TC=0					
Importance	Code	range	type	bytes number	
Required value SP	SP[10]	$\mathbf{- 9 9 9 - 9 9 9 9}$	float	40	

Chart 1 and 2 ALARM alarm setting

Tabulka_číslo TC=1 a 2					
Importance	Code	range	type	bytes number	
Alarm value Low	SPLo	$-999-9999$	float	4	
Alarm value High	SPHi	$-999-9999$	float	4	
Hysteresis	HYST	$0-9999$	float	4	
Mode	RALA	$0-3$	char	1	
Output state at overrun	RELE	$0 / 1$	char	1	

Mode $\quad 0=$ alarm value is SPHI (CONS)
$1=$ alarm value is sum SPHI and SP (required value) (DRIF)
2 = alarm value is define two alarm limits (WIN)
3 = alarm value is define two alarm limits with shift from SP-required value
(DWI)

Output state $\quad 0=\mathrm{OFF}$ at alarm limit overrun relay switch-off
$1=\mathrm{ON}$ at alarm limit overrun relay switch-on

Chart 3 SENS input setting

Tabulka_číslo TC=3					
Importance	Code	range	type	bytes number	
Sensor type	TYPE	$0-13$	char	1	
Decimal point	DP	$0-2$	char	1	
Range beginning	STRS	$-999-9999$	float	4	
Range end	ENDS	$-999-9999$	float	4	
Offset	OFFS	$-999-9999$	float	4	
Compensation	COMP	$0-4$	char	1	

Sensor type	$0=$ thermocouple "J"	$7=$ Pt100
$1=$ thermocouple "K"	$8=$ Ni1000/6180ppm	
$2=$ thermocouple "E"	$9=$ Ni1000/5000 ppm	
$3=$ thermocouple "T"	$10=4-20 \mathrm{~mA}$	
$4=$ thermocouple "R"	$11=0-20 \mathrm{~mA}$	
$5=$ thermocouple "S"	$12=0-10 \mathrm{~V}$	
$6=$ thermocouple "B"	$13=0-50 \mathrm{mV}$	

Decimal point $0=$ number

$$
1=\text { one decimal point }
$$

$$
2=\text { two decimal points }
$$

Compensation $\quad 0=$ without compensation
1 = clamps temperature
$2=$ temperature $20^{\circ} \mathrm{C}$
$3=$ temperature $50^{\circ} \mathrm{C}$
$4=$ temperature $70^{\circ} \mathrm{C}$

Chart 4 PID

Tabulka_číslo TC = 4					
Importance	Code	range	type	bytes number	
Amplification	PB	$\mathbf{- 5 0 0}-\mathbf{5 0 0}$	float	4	
Integrate constant	INT	$0,01-9999$	float	4	
Derivative constant	DER	$0,01-9999$	float	4	
Automatical PID tuning	TUNE	$0 / 1$	char	1	

Automatical tuning $0=\mathrm{NO}$ (NO)
1 = YES (YES)

Chart 5 REGO

Tabulka_číslo TC=5						type	bytes number
Importance	Code	range	char	1			
Control type	TYPE	$0-3$	int	2			
Drive overtravel time	DSER	$5-1000$	int	2			
On change non-sensitivity Yout	DEAD	$0-10$					
Filter F2	F2	$0-16$	int	2			
Sampling	TPID	$1-50$	int	2			
Shift static constant	PS	$0-100$	int	2			
Sampling period	PER	$1-50$	int	2			

Control type
Sampling TPID $\times 0,2=$ sampling period

Chart 6 Control ONOF

Tabulka_čílo TC=6				
Importance	Code	range	type	bytes number
heating shift	PHEA	$-999-9999$	float	4
cooling shift	PCOO	$-999-9999$	float	4
Heating hysteresis	HHEA	$0-9999$	float	4
cooling hysteresis	HCOO	$0-9999$	float	4
Sample draft for evaluation $[\mathbf{s}]$	AT	$0-10$	int	2
Relay 1	RE-1	$0 / 1$	char	1
Relay 2	RE-2	$0 / 1$	char	1

Relay $\quad 0=$ at overrun switch-off (OFF) 1 = at overrun switch-on (ON)

Chart 7 Analog output

Tabulka_číslo TC=7					
Importance	Code	range	type	bytes number	
Input value to analog output	A_IN	$0 / 1$	char	1	
Analog output	AOUT	$0-3$	char	1	
Range beginning for measured value	ASTR	$-999-9999$	float	4	
Range end for measured value	AEND	$-999-9999$	float	4	

A_IN	$0=$ connected control value	
	$1=$ connected	red value
AOUT	$0=0-20 \mathrm{~mA}$	$2=20-0 \mathrm{~mA}$
	$1=4-20 \mathrm{~mA}$	$3=20-4 \mathrm{~mA}$

Chart 8 controller error

Tabulka_číslo TC=8						type	bytes number
Importance	Code	range	char	1			
Output relay 1 and 2 state at the sensor trouble (erro)	RE12	$0-3$	char	1			
Output relay 3 state at the sensor trouble (erro)	RE_3	$0-2$	char	1			
Output relay 3 state at the sensor trouble (erro)	RE_4	$0-2$	char	1			
Analog output state at the sensor trouble (erro)	YOUT	$0-2$					

RE12
$0=-\mathrm{NO}$ without response
$1=\overline{\mathrm{OPPN}}$ relay 1 switch-on relay 2 switch-off
$2=$ SHUT relay 1 switch-off relay 2 switch-on
$3=$ OFF relay 1 switch-off relay 2 vypne

RE_3, 4
$0=$ NO_ without response
$1=\overline{\mathrm{ON}}$ relay 3 switch-on
$2=\mathrm{OFF}$ relay 3 switch-off

YOUT

$$
\begin{aligned}
& 0=-\mathrm{NO}_{-} \text {without response } \\
& 1=-0 \mathrm{~mA} \\
& 2=20 \mathrm{~mA}
\end{aligned}
$$

Chart 9

Tabulka_číslo TC=9				
Importance	Code	range	type	bytes number
optic alarm	OPLO	$-999-9999$	float	4
optic alarm	OPHI	$-999-9999$	float	4
Password	PASS	$0-9999$	int	2
Filter	FILT	$0-32$	int	2
Keyboard lock	LOC	$0 / 1$	char	1
Level (unused)	LEVL	$0 / 1$	char	1

Keyboard lock \quad| $0=$ keyboard unlocked |
| :--- |
| $1=$ keyboard locked |

Chart 10

Tabulka_číslo TC=10					
Importance	Code	range	type	bytes number	
Apparatus address	-	$0-126$	char	1	
Record speed in seconds	-	$1-32000$	int	2	

From the production is set the communication address 0 . For more instruments communication on line is necessary to assign every instrument another address. After apparatus address setting is answer with new address SA.

Parameters intended for diagnostic of controller

Chart 11 (FOR READING ONLY)

Tabulka_číslo TC = 11				
Importance	inner code	range	type	bytes number
Measured value state	NAMERENA	$\mathbf{- 9 9 9 - 9 9 9 9}$	float	4
Relay state	RELE	D0-D4	char	1
Required value state	SP	$\mathbf{- 9 9 9 - 9 9 9 9}$	float	4
Action intervention state	PID	$0-1000$	int	2
Clamps temperature state	TS	$0-60^{\circ} \mathrm{C}$	float	4
Relay 1 and 2 actual position	SERVO	D0, D1	char	1
Input sensor trouble state	PORUCHA_S NIMACE 2	$\mathbf{0 x 0 0 , 0 x F F}$	char	1

Some controllers states are not in physical units.

Chart 12 (FOR READING ONLY)

Measured values to memory RAM about 1 K size data stored record (256 measured values). At set record speed $900 \mathrm{~s}(15 \mathrm{~min})$ is record length 64 hour then last measured value rewrite to new one. Min. record count is 32000 s and max. record count is 1 s (setting in chart 12).
Measured values from record is not possible read at once (for one rading is possible to read max. 61 measured values). After power suplly to controller connecting or in case restart is on pointer position insert the null value.

Tabulka_číslo TC = 12				
Importance	Code	range	type	bytes number
Pointer to last measured value	-	$0-255$	char	1
RAM[0]	-	$-999-9999$	float	4
\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots
RAM[255]	-	$-999-9999$	float	4

Chart 14 for APOSYS 10-2xxx, APOSYS 10-3xxx

Tabulka_číslo TC = 14				
Importance	Code	range	type	bytes number
Progam start	GO	$\mathbf{0 / 1}$	char	$\mathbf{1}$
Program end possibilities	PEND	$\mathbf{0 - 2}$	char	$\mathbf{1}$
Required values security achievement	HOLD	$\mathbf{0 / 1}$	char	$\mathbf{1}$
Power supply failure security	PCUT	$\mathbf{0 - 4}$	char	$\mathbf{1}$
Startup date (APOSYS 10-3xxx only)	DATE	$\mathbf{1 - 3 1}$	char	$\mathbf{1}$
Startup hour (APOSYS 10-3xxx only)	HOUR	$\mathbf{0 - 2 3}$	char	$\mathbf{1}$
Startup minute (APOSYS 10-3xxx only)	MIN	$\mathbf{0 - 5 9}$	char	$\mathbf{1}$

Program end possibilities:

$0=$ OFF control switch-off
$1=$ SBY keep the last attained required value
$2=$ RST time resetting and crossing to program loop start

Required values security achievement

$0=$ NO do not wait to attained required values
$1=$ YES wait to attained required values

Power supply failure security

Is possible to set apparatus reaction to power suplly failure at program run. For controllers APOSYS $10-2 \mathrm{xxx}$ and APOSYS $10-3 \mathrm{xxx}$ are these power supply failure security possibilities:
APOSYS 10-2xxx
$0=$ program end
$1=$ new program start
2 = required value achievement engaged in section with null interval (SBY)

APOSYS 10-3xxx

$0=$ program end with control outputs switch-off
$1=$ new program start
$2=$ required value achievement engaged in section with null interval (SBY)
3 = program continue
$4=$ keep the last attained required value
Chart 15 TIME for APOSYS 10-3xxx

Tabulka_číslo TC $=15$					
Importance	Code	range	type	bytes number	
real time - second	SEC	$0-59$	char	1	
real time - minutes	MIN	$0-59$	char	1	
real time - hours	HOUR	$0-23$	char	1	
real time - week	DAY	$1-7$	char	1	
real time - date	DATE	$1-31$	char	1	
real time - month	MONT	$1-12$	char	1	
real time - year	YEAR	$0-99$	char	1	

Chart 16 for APOSYS 10-2xxx, APOSYS 10-3xxx

Tabulka_číslo TC = 16				
Importance	Code	range	type	bytes number
Program type	PROG	$0-2$	char	1
Programu number	C_PR	$0-9$	char	1

Program type $\quad 0=$ to constant value (SP)
$1=$ ramping program (RAMP)
2 = jumping program (JUMP)

Chart 17 for APOSYS 10-2xxx, APOSYS 10-3xxx

Tabulka_číslo TC=17					
Importance	Code	range	type	bytes number	
Required value RAMP/JUMP	SP[10][20]	$-999-9999$	float	$\mathbf{1 0 x 2 0 x 4 = 8 0 0}$	

Chart 18 for APOSYS 10-2xxx , APOSYS 10-3xxx

Tabulka_číslo TC $=18$					
Importance	Code	range	type	bytes number	
Time interval RAMP/JUMP	TI[10$][20]$	$0-1000$	int	$10 \times 20 \times 2=400$	

Matrix RAMP/JUMP [10][20] importance [program number][sectors number]
location in memory: $\mathrm{TI}[0][0], \mathrm{TI}[0][1], \mathrm{TI}[0][2]$, . . TI[0][19]

$$
\operatorname{TI}[1][0], \operatorname{TI}[1][1], \operatorname{TI}[1][2], ~ . ~ . ~ T I[1][19]
$$

Warning!
Values in charts 17 and 18 is not possible to read on one reading because in protocol in date part is possible transfer 246 bytes only (see layer 2).

5.3 Stored dates format in APOSYS 10

Signed and Unsigned Characters

Range of char type is 1 byte (8 bites). For example value 0×12

Address	+0
Contents	$\mathbf{0 x 1 2}$

Signed and Unsigned Integers

Range of int type is 2 byte (16 bites). For example value 0×1234

Address	$+\mathbf{0}$	$+\mathbf{1}$
Contents	0x12	0x34

Signed and Unsigned Long Integers

Range of long type is 4 byte (32 bites). For example value 0×12345678

Address	+0	+1	+2	+3
Contents	$\mathbf{0 x 1 2}$	$\mathbf{0 x 3 4}$	$\mathbf{0 x 5 6}$	$\mathbf{0 x 7 8}$

Floating-point Numbers

Range of float type is 4 byte (32 bites) by standard IEEE-754

Address	$+\mathbf{+ 0}$	+1	$+\mathbf{+}$	$+\mathbf{+ 3}$
Contents	SEEE EEEE	EMMM MMMM	MMMM	MMMM
			MMMM	MMMM

$\mathbf{S} \quad$ represent sign (1 negative value and 0 is positive value)
E "Two's complement exponent" with offset 127
M 23-bit nominal mantise
Example: value $-12,5$ is given hexadecimally $0 x C 1480000$

Address	$\mathbf{+ 0}$	$\mathbf{+ 1}$	$+\mathbf{2}$	$+\mathbf{3}$
Contents	$\mathbf{0 x C 1}$	$\mathbf{0 x 4 8}$	$\mathbf{0 x 0 0}$	$\mathbf{0 x 0 0}$

Note:

At first is sended the mark with the address (address+0) and last is sended the mark with the address (address +n).

6 Controller connecting with PC

6.1 Cable connexion for communication RS 232

6.2 Cable connexion for communication RS 485 with converter or card

7 Software

7.1 Application of software APOELMOS

Request on hardware:
PC: Pentium 100
graphic card: VGA
CD ROM drive
Request on software:
operation system MS Windows 95/98/ME and higher versions
Installation of software suppose the basic knowledge for working with PC and selected instructions MS Windows.

7.2 Installation

1) Enter CD ROM to CD ROM drive. As long as the CD ROM after enter to CD ROM drive will run Internet Explorer (autorun), you set from concrete menu „Service software" and use a program for the controller APOSYS 10.
2) Copy software to HDD.
3) Create shortcut and move shortcut to Start Programs.
4) Now you can run the software (PA-10.exe).

7.3 Program PA-10 description

1) Introduction
2) Communication line setting
3) Graph setting
4) Data record speed setting
5) Controllers parameters setting
6) Controller set parameters save
7) Automatical record start
8) Record from controller reading

7.3.1 Introduction

The software is for the controller parameters setting and for measured values monitoring.

7.3.2 First start

After the software start at first you have to set the communication line and the controller address.
In the menu setting you click on a button communication port. There is open a window the communication port. At first you set a serial line and a communication speed 9600Bd. After that you click on a button find addresses. In the address chart is detected the controller address which you set to apparatus address. The PC address have to be arbitrary in the range 0-126. After setting you acknowledge by button OK.

7.3.3 Graph setting

In the menu setting you click on the button graph setting. There is open the window graph 3D. Here you set required graph view.

7.3.4 Data record speed setting

In the menu setting you click on the button record speed. There is open the window record speed. Here you set required speed of save to form and automatical form save to file time.

7.3.5 Controllers parameters setting

In the menu setting you click on the button controller setting. There is open the window APOSYS 10 dates. By button reading you can read parameters from the controller namely always those parameters only which active card contain. By button record you can record parameters from active card to the controller. After the controllers parametars setting you click on the button EEPROM for parameters storage in the controller in case of the controller power supply failure.

Warning!

If we have on the rear panel of controller the switch in position ON the parameter record to EEPROM will not achieve.

7.3.6 Controller set parameters save

In the window APOSYS 10 dates (see previous setting). By the button save (open) you can set parameters save to file (refresh from file). File have a suffix ini.
At dates refresh from file are parameters projection on the controller parameters cards only. Parameters record to the controller you have to do from every card extra. One exception is card COMP for controller version APOSYS 10-2xxx and APOSYS 10-3xxx. At first we set the program (PROG) and program number (C_PR) and after that we achieve the parameters refresh by the key open. By the key record we record parameters to controller. This is recommended process. Because at program change or program number are every time retrieved parameters from controller to card.

7.3.7 Automatical record start

In the main window you check off automatical reading and record to file.

7.3.8 Record reading from the controller

In the menu setting we click on the key record from the controller. The window record is open. By the key reading we can retrieve 255 saved measured values in the controller. Record frequency we can affect on card ADD in window APOSYS 10 dates.

8 Certificate about the product assembly and quality

Microprocessor controller APOSYS 10

product nr .
88-09-08888

We acknowledge that the above mentioned product is complete. And the product answers to technical conditions and it is well inspected and tested.

9 Guarantee conditions

The producer is responsible that his product has and will have characters appointed by technical norms for appointed time, that it is complete and without defect. The producer is also responsible for defects, which a customer will find out in the guarantee time and which he will claim in time. The basic condition of guarantee is using the controller this way as the above mentioned in the using handbook.

The guarantee time is 36 months from the day of sale.
The guarantee is possible to apply at material defects or at bad function of product. Guarantee repairs are achieved with exchange way.

The guarantee is dissolved as long as on the product there were made arrangements or guarantee labels were broken down and as long as the product was violently mechanically damaged or it was used the wrong way.

Guarantee and afterguarantee service perform entirely A.P.O. - ELMOS.

Date of sale: \qquad

Signature: \qquad

Substance

1 Introduction 3
2 Description 3
2.1 Front panel 3
2.2 Input part 4
2.3 Output part. 5
2.4 Apparatus function 5
2.5 Technical dates 6
2.6 Dimensions 7
2.7 Mounting instruction 7
2.8 Connecting of terminal blocks 8
2.9 Connecting of main distribution frame 9
2.10 Block diagram of inner connexion 10
2.11 Input signals connection 11
2.11.1 Thermocouple connection 11
2.11.2 Resistive sensor Pt100 or Ni1000 connection 11
2.11.3 Passive converter 4~20 mA connection 12
2.11.4 Active signal 0(4) 20 mA connection 12
2.11.5 Voltage signal $0 \sim 10 \mathrm{~V}$ connection 13
2.11.6 Voltage signal $0 \sim 50 \mathrm{mV}$ connection 13
2.11.7 Electric drive with pulse control recommended connection 14
3 Control 15
3.1 Control characteristic ONOF 15
3.1.1 Block ONOF control 15
3.1.2 ONOF control - first circle 16
3.1.3 ONOF control - second circle 16
3.2 Characteristic PID control PIDI, PID3, automatic control 17
3.2.1 Block PID3 control 18
3.2.2 Block PIDI control 18
3.2.3 Manual control 19
3.3 Characteristic of the proportional control PROI 19
3.4 Block of analog output 20
4 Programming manual 21
4.1 Block diagram for operating 22
4.2 Parameters meaning 23
4.2.1 Alarm mode, processed, belong to measured value (CONS) 24
4.2.2 Relative alarm mode, deduce from the required value as the allowed deviation (DRIF) 25
4.2.3 Processed alarmu mode with allowed deviation zone, belong to measured value only (WIN) 25
4.2.4 Alarmu relative mode with allowed deviation zone, deduce from the required value, as allowed deviation (DWI) 26
4.3 Setting examples 32
4.4 Parameters limit values 33
5 Communication protocol 35
5.1 Protocol description 35
5.2 LAYER 2 36
Layer 7 40
5.3 Stored dates format in APOSYS 10 51
6 Controller connecting with PC 52
6.1 Cable connexion for communication RS 232 52
6.2 Cable connexion for communication RS 485 with converter or card 52
7 Software 53
7.1 Application of software APOELMOS 53
7.2 Installation 53
7.3 Program PA-10 description 53
7.3.1 Introduction 53
7.3.2 \quad First start 54
7.3.3 Graph setting 54
7.3.4 Data record speed setting 55
7.3.5 Controllers parameters setting 55
7.3.6 Controller set parameters save 55
7.3.7 Automatical record start 56
7.3.8 Record reading from the controller 56
8 Certificate about the product assembly and quality 57
9 Guarantee conditions 57

